(مقاله کوتاه علمی) بررسی اثر غلظت‌های مختلف کلشی‌سین در تولید متابولیت‌های ثانویه بافت کالوس گیاه دارویی Linum usitatissimum L.

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه ژنتیک و به‌نژادی گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران

2 گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین الملل امام خمینی (ره) قزوین.ایران

3 گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره) قزوین، ایران

چکیده

چکیده
در این مطالعه که به صورت فاکتوریل در قالب طرح کاملا تصادفی اجرا گردید، تأثیر غلظت­های مختلف کلشی­سین (0، 15، 30، 45 و 60 میلی­گرم در لیتر) در بازه­های زمانی متفاوت (12، 24 و 48 ساعت)روی میزان تولید فنول و لیگنان در بافت کالوس گیاه دارویی (Linum usitatissimum L.) مورد بررسی قرار گرفت. جهت کالوس­زایی، ریزنمونه­های کوتیلیدون در محیط کشت جامد MS حاوی 2 میلی گرم در لیتربنزیل آمینوپورین (BAP) و 1 میلی‌گرم در لیتر نفتالین استیک اسید (NAA) کشت شدند. میزان ترکیبات فنولی (با معرف فولین- سیوکالتیو)و لیگنانی کل براساس روش اسپکتروفتومتریو به‌ترتیب بر حسب منحنی‌های استاندارد گالیک اسید و سزامین در طول مـوج­های ۷۶۵ و 288 نانومتر اندازه­گیری شد. بیشترین مقدار وزن تر(8/9 گرم در زمان 24 ساعت) و وزن خشک کالوس (25/0 گرم) در همه بازه­های زمانی مربوط به تیمار 45 میلی­گرم در لیتر کلشی سین بود. حداکثر و حداقل مقدارلیگنان در این بازه­های زمانی به‌ترتیب ازتیمارهای 15 میلی­گرم در لیتر (به‌طور میانگین4/28 میلی­گرم سزامین بر گرم وزن خشک) و 30 میلی­گرم در لیتر (به‌طور میانگین75/19 میلی­گرم سزامین بر گرم وزن خشک) کلشی‌سین بدست آمد.نتایج نشان داد که بیشترین (164میلی­گرم گالیک اسید بر گرم عصاره) و کمترین (6/145گالیک اسید بر گرم عصاره) مقادیر فنل درکالوس­ها به‌ترتیب متعلق به غلظت 60 و 30 میلی­گرم در لیتر کلشی­سین بود. مطابق نتایج حاصله، میزان تولید متابولیت­های ثانویه مهم گیاه کتان مانند فنل و لیگنان تحت تیمارهایی از کلشی­سین افزایش یافت.

کلیدواژه‌ها


References

  1. Abdoli, M., Moieni, A. and Naghdi Badi, H. 2013. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea (L.). Acta Physiologiae Plantarum, 35: 2075-2083.
  2. Akkol, E.K., Göger, F., Koşar, M. and Başer, K.H.C. 2008. Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chemistry, 108: 942-949.
  3. Amiri, S., Kazemitabaar, S., Ranjbar, G. and Azadbakht, M. 2010. The effect of trifluralin and colchicine treatments on morphological characteristics of jimsonweed (Datura Stramonium L.). Trakia Journal of Sciences, 8: 47-61.
  4. Atichart, P. 2013. Polyploid induction by colchicine treatments and plant regeneration of Dendrobium chrysotoxum. Thai Journal of Agricultural Science, 46: 59-63.
  5. Ayyobi, N.,Hosseini, B. and Fattahi, M.2017. Induction Effects of Colchicine and Chitosan on Rosmarinic Acid Production in Hairy Root Cultures of Zarrin-Giah (Dracocephalum kotschyi Boiss). Journal of cellular and molecular researchers (Iranian journal of biology), 30(1): 1-13.
  6. Bagheri, M. and Mansouri, H. 2015. Effect of induced polyploidy on some biochemical parameters in Cannabis sativa L. Applied biochemistry and biotechnology, 175: 2366-2375.
  7. Belabbassi, O., Khelifi-Slaoui, M., Zaoui, D., Benyammi, R., Khalfallah, N., Malik, S., Makhzoum, A. and Khelifi, L. 2016. Synergistic effects of polyploidization and elicitation on biomass and hyoscyamine content in hairy roots of Datura stramonium. Biotechnol. Biotechnology, Agronomy, Society and Environment, 20(3): 408-416.
  8. Bernard, F., Moghbel, N. and Hassannejad, S. 2012. Treatment of licorice seeds with colchicine: changes in seedling DNA levels and anthocyanin and glycyrrhizic acid contents of derived callus cultures. Natural product communications,7(11): 1457-60.
  9. Bhatnagar, A.S., Hemavathy, J. and Gopala Krishna, A.G. 2015. Development of a rapid method for determination of lignans content in sesame oil. Journal of Food Science and Technology, 52: 521-527.
  10. Buggs, R.J., Chamala, S., Wu, W., Tate, J.A., Schnable, P.S., Soltis, D.E., Soltis, P.S. and Barbazuk, W.B. 2012. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin. Current Biology,22:248-252.
  11. Byrne, M.C., Nelson, C.J. and Randall, D.D. 1981. Ploidy effects on anatomy and gas exchange of tall fescue leaves. Plant Physiology, 68: 891-893.
  12. Caruso,I., Lepore, L., De Tommasi, N., Dal Piaz, F., Frusciante, L., Aversano, R., Garramone, R. and Carputo, D. 2011. Secondary metabolite profile in induced tetraploids of wild Solanum commersonii Dun. Chemistry & biodiversity, 8: 2226-2237.
  13. Caruso, I., Dal Piaz, F., Malafronte, N., De Tommasi, N., Aversano, R., WulffZottele, C., Scarno, MT. and Carputo, D. 2013. Impact of Ploidy Change on Secondary Metabolites and Photochemical Efficiency in Solanum bulbocastanum.Natural prduct communications, 8 (10): 1387-1392.
  14. Dehghan, E., Häkkinen, S.T., Oksman-Caldentey, K.-M. and Ahmadi, F.S. 2012. Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell, Tissue and Organ Culture (PCTOC), 110:35-44.
  15. Dermen, H. 1940. Colchicine polyploidy and technique. The botanical review, 6: 599-635.
  16. Dhooghe, E., Van Laere, K., Eeckhaut, T., Leus, L. and Van Huylenbroeck, J. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture (PCTOC),104: 359-373.
  17. El-Nashar, Y.I. and Ammar, M. 2016. Mutagenic influences of colchicine on phenological and molecular diversity of Calendula officinalis L. Genetics and molecular research: 15(2): 1-15.
  18. Hu, C., Yuan, Y.V. and Kitts, D.D. 2007. Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food and chemical toxicology, 45: 2219-2227.
  19. Javadian, N., Karimzadeh, G., Sharifi, M., Moieni, A. and Behmanesh, M. 2017. In vitro polyploidy induction: changesinmorphology, podophyllotoxin biosynthesis, and expression of the related genes in Linum album (Linaceae). Planta, 24: 1165-1178.
  20. Jones, J.R., Ranney, T.G. and Eaker, T.A. 2008. A novel method for inducing polyploidy in Rhododendron seedlings. Journal American Rhododendron Society, 62: 130-135.
  21. Kabera, J.N., Semana, E., Mussa, A.R. and He, X. 2014. Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. Journal of Pharmacy and Pharmacolology, 2: 377-392.
  22. Kaensaksiri, T., Soontornchainaksaeng, P., Soonthornchareonnon, N. and Prathanturarug, S. 2011. In vitro induction of polyploidy in Centella asiatica (L.) Urban. Plant Cell, Tissue and Organ Culture, 107 (2): 187-194.
  23. Kharde, A., Chavan, N., Chandre, M., Autade, R. and Khetmalas, M. 2017. In vitro enhancement of bacoside in brahmi (Bacopa monnieri) using colchicine. Journal of plant biochemistry and physiology, 5: 1-6.
  24. Kumar Yadav, A., Singh, S., Yadav, S,C.,   Dhyani, D., Bhardwaj, G., Sharma, A. and  Singh B. 2013. Induction and morpho-chemical characterization of Stevia rebaudiana colchiploids. Indian Journal of Agricultural Sciences, 83 (2): 159–65.
  25. Lin, X., Zhou, Y., Zhang, J., Lu, X., Zhang, F., Shen, Q., Wu, S., Chen, Y., Wang, T. and Tang, K. 2011. Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. Biotechnology and applied biochemistry, 58: 50-57.
  26. Liu, Z. and Gao, S. 2007. Micropropagation and induction of autotetraploid plants of Chrysanthemum cinerariifolium (Trev.) Vis. In Vitro Cellular & Developmental Biology-Plant, 43: 404-408.
  27. Martínez, M.E., Poirrier, P., Prüfer, D., Schulze, C., Jorquera, L., Ferrer, P., Díaz, K. and Chamy, R. 2018. Kinetics and modeling of cell growth for potential anthocyanin induction in cultures of Taraxacum officinale GH Weber ex Wiggers (Dandelion) in vitro. Electronic Journal of Biotechnology, 36: 15-23.
  28. Parsons, J.L., Martin, S.L., James, T., Golenia,G., Boudko, E.A. and Hepworth, S.R. 2019. Polyploidization for the genetic improvement of Cannabis sativa. Frontiers in Plant Science,10(476): 1-12.
  29. Randall, D.D., Nelson, C.J. and Asay, K.H. 1977. Ribulose bisphosphate carboxylase: altered genetic expression intall fescue. Plant Physiology,59: 38-41.
  30. Sadat Noori, S.A., Norouzi, M., Karimzadeh, G., Shirkool, K. and Niazian, M. 2017. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell, Tissue and Organ Culture (PCTOC), 130: 543-551.
  31. Salaj, J., Petrovská, B., Obert, B. and Pret'ová, A. 2005. Histological study of embryo-like structures initiated from hypocotyl segments of flax (Linum usitatissimum L.). Plant cell reports, 24: 590-595.
  32. Tsuro, M., Kondo, N., Noda, M., Ota, K., Nakao, Y. and Asada, S. 2016. In vitro induction of autotetraploid of Roman chamomile (Chamaemelum nobile L.) by colchicine treatment and essential oil productivity of its capitulum. In Vitro Cellular & Developmental Biology-Plant, 52: 479-483.
  33. Vijayalakshmi, A. andAnju, S. 2011. Effect of colchicine on cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Asian Journal of Environmental Science, 6: 171-174.