تعیین شرایط بهینه سنتز نانو ذرات سبز نقره توسط عصاره آبی گیاه خوراکی دارویی غازیاقی (Falcaria vulgaris) و بررسی خواص آنتی‌اکسیدانی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد خرم آباد، خرم آباد، ایران

چکیده

امروزه پیدایش نانو‌فناوری و سنتز نانو ذرات پیشرفت‌های زیادی را برای بشر به همراه داشته است ولی این فناوری بایستی از لحاظ ایمنی مورد توجه قرار گیرد. در این میان سنتز سبز نانو ذرات به دلیل سازگاری با محیط زیست، غیر سمی‌بودن و تولید کم هزینه گسترش یافته است، زیرا گیاهان توانایی بسیار خوبی برای کاهش یون‌های فلزی و سنتز نانوذرات دارند. در پژوهش حاضر، شرایط بهینه‌ی لازم برای سنتز سبز نانو ذرات نقره با استفاده از عصاره گیاه خوراکی دارویی Falcaria vulgaris Bernh. یا معادل فارسی آن گیاه غازیاقی و اثر آنتی اکسیدانی عصاره و نانو ذره‌ی حاصل از آن بررسی شده است. در این پژوهش نخست اندام هوایی گیاه قبل از مرحله گلدهی در اواخر اردیبهشت 98 از دشت‌های جنوب خرم‌آباد جمع‌آوری و در سایه خشک شد. پس از تهیه عصاره آبی گیاه غازیاقی به روش خیساندن، پارامترهای موثر در سنتز نانو ذرات نقره مانند pH، غلظت نیترات نقره، غلظت عصاره، دما و زمان بررسی شد. نتایج نشان داد شرایط بهینه‌ی سنتز سبز نانو ذرات نقره شامل غلظت mM 8 نیترات نقره، 11=pH، حجم ml 4 عصاره، دمای C ̊40 در مدت min 120 است. تشکیل نانو ذرات نقره توسط روش‌های ماورابنفش- مرئی، پراش پرتو ایکس و مادون قرمز تایید شد. بررسی ریخت‌شناسی نانو ذراتِ حاصل شکل کروی با اندازه ذرات nm 29-16 را نشان داد. ارزیابی خاصیت آنتی اکسیدانی عصاره آبی و نانوذره‌ی سنتز شده با روش متداول DPPH انجام شد. بیشترین خاصیت مهارکنندگی رادیکال آزاد در حلال آب با غلظت μl/ml 5/12 عصاره و نانو ذره نسبت به اسید-اسکوربیک بود. در نهایت می‌توان نتیجه گرفت وجود ترکیبات شیمیایی مختلف که باعث فعالیت آنتی اکسیدانی عصاره شده است توانایی عصاره و نانو ذره‌ی حاصل را به عنوان یک منبع آنتی اکسیدان طبیعی بیان می‌کند.

کلیدواژه‌ها


1. Ahmad, A., Wei Y. and Syed F. 2016. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections.  Microbial Pathogenesis, 99: 271–281.
2. Ahmad, N., Sharma, S., Alam Md, K., Singh, V.N., Shamamsi, S.F. and Mehta, B., et al. 2010. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81: 81-86.
3. Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R. and Koirala, N. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal, Plants, 8(4): 96-107.
 4.Bakhshi Khaniki, Gh. and Hosseinzadegan, R. 2014. Investigation of Chemical composition of essential oil of Teucrium polium L. in different habitats of Mazandaran Province, New Cellular and Molecular Biotechnology Journal, 3 (12):  47-55. (In Persian) 
5.Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D.S. and Autrup, H. 2012. Toxicity of silver nanoparticles- Nanoparticle or silver .Toxicology Letters, 208: 286-292.
6.Behravan, M., Hossein Panah, A., Naghizadeh, A., Ziaee, M., Mahdavi, R. and Mirzapour, A. 2019. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity, International Journal of  Biological Macromolecules, 124: 148-154.
7. Britton, H.T.S. and Robinson, R.A. 1931. CXCVIII.—Universal buffer solutions and the dissociation constant of veronal, Journal of the American Chemical Society (Resumed), 0: 1456-1462.
8. Cho, Y.M., Mizuta, Y., Akagi, J., Toyoda, T., Sone, M. and Ogawa, K. 2018. Size- dependent acute toxicity of silver nanoparticles in mice. Journal of Toxicologic Pathology, 31(1): 73-80.
9. Choi, C.W., Kim, S.C., Hwang, S.S., Choi, B.K., Ahn H.J., Lee M.Y., Park S.H. and Kim, S.K. 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants flavonoids by assay- guided comparison, Plant Science, 163: 1161-1168. 
10.Choobkar, N., Kakoolaki, S. and Mohammadi, F. 2017. The biological effects of herbal medicine, Falcaria vulgaris: An article review, Iran J Aquat Anim Health, 3(1): 74-83.
11.Doosti, B., Nabipour, F.and Hajiamraei, A. 2019. Green synthesis of silver nanoparticle by using the aqueous extract of Fumaria parviflora and investigation of their antibacterial and antioxidant activities. Razi Journal of Medical Sciences, 26 (6): 105-117. (In Persian)
12.Ebrahimi Monfared, K., Rafiee, Z. and Jafari, S.M. 2012. Phenolic content and antioxidant activity of Flacaria vulgaris extracts. Analytical Chemistry Letters, 2 (3): 159-170.
13. Ferreyra Maillard, A.P.V. and Dalmasso, P. R. 2018. Interaction of green silver nanoparticles with model membranes: possible role in the antibacterial activity. Colloids and Surfaces B., 171: 320–326.
14. Garcia, M.A. 2012. Surface plasmons in metallic nanoparticles: fundamentals and applications, Journal of Physics D: Applied Physics, 45: 389501 (1pp).
15. Gorjian, F., Mirza jani, R. and Kolahi, M. 2019. Phytochemical, antioxidant and phenolic content survey of leaves and flowers hydroalcoholic extracts of the Conocarpus erectus and biosynthesis of gold and silver nanoparticles using this extracts. Eco­-­phytochemical Journal of Medicinal plants, 7 (1): 87-100.
16.Gour, A. and Kumar Jain, N. 2019. Advances in green synthesis of nanoparticles. Artificial Cells, Nanomediciline and Biotechnology, 47(1): 844-851.
17.Grätzel, M. 2001. Photoelectrochemical cells. Nature, 414: 338-344.

18.Gress, E.M. 1923. Falcaria rivini, A plant new to the UNITED STATES. Rhodora, 25 (289): 12-­13.

19.Haji Sharif A. 2007. The secret and myetery of herbal medicin, 4th, Tehran, Hafez Novin, pp: 944. (In Persian)  
20.Heidari M. and Bagheri M. 2019. The antimicrobial effects of Hydro- extract of Mentha piperita Lamiaceae essential oil Nanoemulsion on gram- negative bacteria of Escherichia coli: aLaboratory study.  Journal of Rafsanjan University of Medical Sciences, 18(6): 515-528. (In Persian)
21.Heidari, R., Rashidpour, M. and Azadpour, M. 2016. Green synthesis of silver nanoparticles using aqueous extract of Rosmarinus officinalis L.: synthesis and antibacterial activities, Journal of Nanomaterials, 8 (26): 99-­106.(In Persian)
22.Hosseini, S., Gharachorloo, M., Ghiassi Tarzi, B. and Ghavami M. 2014. A review of antioxidant capacity assays (Reactions, Methods, Pros and Cons), the Society for Information Display, 11(4): 89-111.
23.Jaberian, H., Piri, K. and Nazari, J. 2013. Photochemistry composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry, 136: 237-244.
24.Karamian, R., Asadbeigy, M. and Yari, S. 2018. Antioxidant activity of Glycyrrhiza glabra L. extract and protective effect of its leaf extract on ethanol-­Induced nephrotoxicity in Male Rate, Journal of Ilam University of Medical Sciences, 26 (4): 1-12. (In Persian)  
25.Kamari Bidkorpeh, M., Jamzad, M. and Naderi, F. 2019. Evaluation of the aqueous extract of Portulaca oleracea L. potential in the synthesis of Iron oxide nanoparticles, Eco-­phytochemical Journal of Medicinal Plants,  26 (2): 117-­128. (In Persian)  
26.Katalinik, V., Milos, M., Kulisic, T. and Jukic, M. 2006. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols, Food Chemistry, 94: 550-557.
27.Khan Ahmadi, M. and Shahrezaei, F. 2007. Study on chemical constituents of the essential oil of Falcaria vulgaris Bernh. 6 (23): 52- 57. (In Persian)
28.Khazaei, M. and Salehi, H. 2006. Protective effect of Folcaria vulgaris extract on ethanol induced gastric ulcer in rat. Iranian Journal Pharmacology and Therapeutics, 5: 43-46.
29.Krinsha, V.C., Ranger, K., Lavate, R.A. and Kumbhar, D.A. 2016. Sathe S.S, Kokare B.N., green synthesis of silver nanoparticles from plants. Proceeding of internatinal conference on advances in materials science ISBN 978-93-5254-490-5.
30.Mensor, L.L., Menezes, F.S., Leitão ,G. G., Reis, A.S., Santos, T.C., Coube, C.S. and Leitão, S.G. 2001. Screening of brazilian plant extracts for antioxidant activity by the use of DPPH free radical method, Phytotherapy Research, 15: 127-130.

31.Miguel M.G. 2010. Antioxidant activity of medicinal and aromatic plants. A review. Flavour and Fragrance Journal, 25: 291-312.

32.Moyer, C.A., Brentano, L., Gravens, D.L., Margraf, H.W. and Monafo, W.W. 1965. Treatment of large human burns with 0.5% silver nitrate solution. Archives of Surgery, 90: 812-867.
33. Nadaroğlu, H. and Güngör, A. A. 2017. İnce S, Synthesis of nanoparticles by green synthesis method. Juneau Icefield Research Program, 1(1): 6-9.  
34.Pareek, V., Bhargava, A., Gupta, R., Jain, N. and Panwar, J. 2017. Synthesis ana applications of noble metal nanoparticles: A Review. Advanced Science, Engineering and Medicine, 9: 527-544. 
35.Parka, E., Bae, E., Yi, J., Kim, Y., Choi, K. and Lee, SH. 2010. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles, Environmental Toxicology and Pharmacology, 30(2): 162-8.
36.Ranjbar, A., Ataie Z., Khajavi F., and Ghasemi, H. 2014. Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat. Nanomedicinal Journal, 1(3): 205-211.
37.Rezaei-Zarchi, S., Taghavi-Foumani, M. H., Razavi Sheshdeh, S.A.R. and Negahdary M. 2013. The effect of silver nanoparticles on blood cells in male rats. The Scientific Journal of Iranian Blood Transfusion Organization, 10(2): 147-153. (In Persian) 
38.Roy, A., Bulut, O., Some, S., Mandal, A.K. and Yilmaz, M.D. 2019. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. Royal Society of Chemistry Advances, 9(5): 2673-2702.
39.Safari, M. and Ahmadi-­Asbchin, S. 2019. Evaluation of antioxidant and antibacterial activities of methanolic extract of medlar (Mespilus germanica L.) leaves,Biotechnology and Biotechnological Equipment, 33 (1): 372-378.
40.Shafaghat, A. 2011. Volatile oil constituents and antibacterial activity of different parts of Falcaria vulgaris Bernh. Growing wild in two localities from Iran, Natural Product Research, 25(4): 368-373.
41.Salahshoor, M.R., Mohammadi, M.M., Roshankhah, Sh., Najari, N. and Jalili, C. 2019. Effect of Falcaria vulgaris on oxidative damage of liver in diabetic rats. Journal of Diabetes & Metabolic Disorders, 18 (1): 15- 23.
42.Shankar, S.S., Rai, A., Ahmad, A., Sastry, M. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275: 469-502.
43.Sperling, R.A., Zhang ,F., Zanella, M., Parak, W.J. 2008. Biological applications of gold nanoparticles. Chemical Society Reviews,37: 1896-1908.
44.Sreeprasad, T.S. and Pradeep, T. 2013. Springer Handbook Nano- materials. Springer, Berlin, Heidelberg, pp: 1221.
45.Soudamani, S., Yuvaraj, S., Malini, T. and Balasabramanian, K. 2005. Experimental diabetes has adverse effects on the differentiation of ventral prostate during sexual maturation of rats. The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology, 287: 1281-1289.
46.Sumner,  L.W., Lei, Z., Nilolau, B.J., Saito, K. 2015. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects, Natural Product Reports, 32: 212-229.
47.Tao, A., Kim, F., Hess, C., Goldberger, J., He, R. and Sun, Y., et al. 2003. Langmuir- Bldgett silver nanowire monolayers for molecular sensing using surface- Enhanced Raman Spectroscopy. Nano Letters, 3(9): 1229-1233.
48.USDA APHIS. 2012. Weed Risk Assessment for Falcaria vulgaris Bernh. (Apiaceae)­-Sickleweed. United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Version 1. www.aphis.usda.gov/plant_health/plant_pest_info/weeds/downloads/wra/Falcaria_vulgaris
49. Veerasamy, R., Xin, T.Z.,  Gunasagaran S., Wie Xiang, T.F., Chou Yang, E.F.,  an Jeyakumar N. 2011. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society,15: 113-120.

50.Zanganeh, M.M. 2019. Green synthesis and chemical characterization of silver nanoparticles from aqueous extract of Falcaria vulgaris leaves and assessment of their cytotoxicity and antioxidant, antibacterial, antifungal and cutaneous wound healing properties. Applied Organometallic Chemistry, 33 (9): e4963.

51.Zanganeh, M.M., Ghanei alvar, H., Akbari bazm, M., Ghanimatdan, M., Abbasi, N., Goorani, S., Pirabbasi, E. and Zangeneh, A. 2019. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant,
antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. Journal of Photochemistry and Photobiology B: Biology, 197: 111556.

52.Zarea, E. 2015. Green synthesis of Ag, Fe3O4, ZnO, CuO and TiO2 nanoparticles in some medicinal plants and study of antibacterial and antifungal effects, Master thesis, Faculty of Agriculture, Shahid Bahonar University of Kerman. (In Persian)
53.Zargar, M. and Mohammadi Bandari, N. 2013. Silver nanoparticles and their applications. Applied Biology, 11(3):13-31. (In Persian)