بررسی اثر کودهای زیستی بر برخی از صفات فیزیولوژیکی و بیوشیمیایی گیاه دارویی Dracocephalum kotschyi Boiss. تحت رژیم‌های رطوبتی مختلف خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه خاکشناسی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

2 استاد، گروه خاکشناسی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

3 استادیار، گروه خاکشناسی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

4 استادیار، گروه علوم خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

زرین گیاهBoiss.  Dracocephalum kotschyi از مهمترین گیاهان دارویی خانواده نعناعیان (Lamiaceae) است تغییرات برخی از صفات فیزیولوژیکی، اثر کود‌های زیستی در چهار سطح بر رشد زرین گیاه در شرایط که به علت تحمیل شرایط نامساعد محیطی در حال انقراض است. به‌منظور بررسی کارایی کود‌های زیستی بر روی تنش خشکی در سه سطح (آبیاری تا تکمیل 4٠، 6٠ و 80 درصد ظرفیت مزرعه‌ای) آزمایشی در سال ۱۳۹۸ به اجرا درآمد. بررسی روند تغییرات رنگیزه­های فتوسنتزی، فلورسانس کلروفیل و میزان نسبی آب برگ در زرین گیاه نشان داد که با افزایش تنش خشکی میزان کلروفیل a، b و کلروفیل کل به همراه فلورسانس کلروفیل (Fv/Fm) کاهش معنی‌داری داشت. در حالی که مصرف کود‌های زیستی سوپرنیتروپلاس و بیوفسفر در شرایط آبیاری تا تکمیل ۶٠ و ۴٠ درصد ظرفیت مزرعه­ای به‌طور معنی‌داری میزان صفات فوق‌الذکر را در برگ‌های زرین گیاه در مقایسه با گیاهان تیمار شده با کود نیتروکسین و گیاهان شاهد بالاتر نگه داشت. افزایش شدت خشکی همچنین باعث افزایش معنی‌دار در کربوهیدرات‌ها، پروتیین‌های محلول، آنتوسیانین‌ها و فلاونویید‌ها گردید، که البته مصرف کود‌های زیستی حاوی باکتری‌های محرک رشد٬ میزان این ترکیبات در مقایسه با شاهد همراه با افزایش بیشتری بود. بیشترین میزان آنتوسیانین (۸۲/۳۷ میلی‌گرم بر گرم بافت تازه) و ترکیبات فلاونویید‌ها (۶۲/۱۶ میلی‌گرم بر گرم بافت تازه) مربوط به گیاهان رشد یافته تحت تنش خشکی شدید (آبیاری تا تکمیل ۴٠ درصد ظرفیت مزرعه‌ای) و مصرف کود زیستی بیوفسفر به‌دست آمد. براساس نتایج این آزمایش استفاده از کود‌های زیستی سوپرنیتروپلاس و بیوفسفر باعث بهبود خصوصیات فیزیولوژیکی و بیوشیمیایی زرین گیاه در هر دو شرایط تنش کم آبی و بدون تنش گردید. افزایش صفات اندازه‌گیری شده، نشان‌دهنده نوعی سازگاری به شرایط تنش خشکی به حساب می‌آید.

کلیدواژه‌ها


  1. Abdel Latef, A.A.H., Abu Alhmad, M.F., Kordrostami, M., Abo–Baker, A.B.A.E. and Zakir, A. 2020. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J. Plant Growth Regul. 39: 1293–1306. DOI: 10.1007/s00344-020-10065-9.

    2.Anli, M., Baslam, M., Tahiri, A., Raklami, A., Symanczik, S., Boutasknit, A., El Mokhtar, M. Brn-Laouane, R.B., Toubali, S., Rahou, Y.A., Chitt, M.A., Oufdou, K., Mitsui, T., Hafidi, M., and Meddich. A. 2020. Biofertilizers as strategies to improve photosynthetic apparatus. Growth. and drought stress tolerance in the date palm. Front. Plant Sci. https://doi.org /10.3389/ fpls.2020. 516818.

    3.Asadi, A.M., and Khoshnoodi Yazdi, A. 2010. Investigation of ecological characteristics of Dracocephalum kotschy Boiss. In the pastures of Bojnourd city. Iranian Medicinal and Aromatic Plants Research. 26(3): 406- 414.

    1. Atrashi, M., and Moradi, K. 2012. Effect of microsamples and growth hormones on direct regeneration of Dracocephalum kotschy Boiss.) Using tissue culture technique. Herbal Remedies. 3: 127-134.

    5.Bahrami, Kh., Omidbeigi, R. 2002. The effect of nitrogen and phosphorus on fertility and quality of the active ingredient of the medicinal plant Phagopyrum. Master Thesis in Horticulture. Faculty of Agricultural Sciences. Trabiat Modares University.

    6.Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-54.

    7.Da Costa, R.M.F., Simister, R., Roberts, L.A., Timms-Taravella, E., Cambler, A.B., Corke, F.M.K., Han, J., Ward, R.J., Buckeridge, M., Gomez, L.D., and Bosch, M. 2019. Nutrient and drought stress: implications for phenology and biomass quality in miscanthus. Annals of Botany, 124 (4): 553-566.

    8.Dekankova, K., Luxova, M., GaS parikova, O. and Kolarovi, C.L. 2004. Response of maize plants to water stress. Biologia 13: 151-155.

    9.Ding, L., Lu, Z., Gao, L., Guo, S., and Shen, Q. 2018. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress Frontiers in Plant Science 10: 1143. https://doi.org/10.3389 /fpls.2018.01143.

    10.Davari Nejad, G.H., Shirani, S., and Zareie, M. 2015. The effect of irrigation regimes on some morphophysiological characteristics of four fig cultivars. Journal of Horticultural Sciences. 9 (4): 500-517.

    11.Duo, L.A., Liu, C.X., and Zhao. S.L. 2018. Alleviation of drought stress in turf grass by the combined application of nano-compost and microbes from compost. Russ. J. Plant Physiol. 65: 419-426. DOI: 10.1134/ S1021443718030 10X.

    12.Ehsani, A., Mozafarian, W., and Najafpour Nouraei, M. 2014. Investigation of distribution and introduction of medicinal species of mint (Lamiaceae) in Mazandaran province. Second National Conference on Medicinal Plants and Sustainable Agriculture. Hamedan, https:// civilica.com/doc/306533.

    13.Enebak, S.A., Wei, G., and Kloepper, J.W. 1997. Effects of plant growth promoting rhizobacteria on loblolly and slash pine seedlings. Forest Sci. 44: 139-144.

    14.Gao, C., El-Sawah, A., Ali, D.F.I. Hamoud, Y.A., Shaghaleh, H., and Sheteiwy, M.S. 2020. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy. 10(3): 319. https://doi.org/ 10.3390/agronomy10030319.

    15.Ghorbanli, M., Bakhshi Khaniki, G.R., and Zakeri, A. 2011. The effect of drought stress on antioxidant compounds in flax (Linum usitatissimum L.). Iranian Journal of Medicinal and Aromatic Plants Research. 27(4): 647-658.

    16.Fakhr Tabatabai, M. 1995. Living Nature: A Systemic Clash. Publishing Joint Stock Company, Tehran. P 384.

    17.Golshani, S., Karamkhani, F., Monsef esfehani, H.R. and Abdollahi, M. 2004. Antinociptive effects of the essential oil of Dracocephalum kotschyi in the mouse writhing test. Journal of Pharmaceutical Sciences, 7(1): 76-79.

    1. Guo, Y., Ni, Y. and Huang, J. 2010. Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Tropical Grasslands 44: 109-114.

    18.Gurrieri, L., Merico, M., Trost, P., Forlani, G., and Sparla, F. 2020. Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. 9(11): 367. https://doi.org /10.3390/biology9110367.

    19.Hsiao, A. 2000. Effect of water deficit on morphological and physiological characterizes in Rice (Oryza sativa). J. Agri. 3: 93-97.

    20.Hughes. S.G., Bryant. J.A., and Smirinoff, N. 1989. Molecular biology. Application to studies of stress tolerance. In: Plants under stress. Pp: 131-135.

    21.Jahan. M., and Nasiri Mahallati, M. 2012. Soil fertility and biological fertilizers (agroecological approach). Ferdowsi University of Mashhad Publications. P250.

    22.Jahanian, F., Ebrahimi, S.A., Rahbar Roshandel, N., and Mahmoudian, M. 2005. Xanthomicrol is the main cytotoxic component of Dracocephalum kotschyii and a potential anti-cancer agent. Phytochemistry, 66(13): 1581-1592.

    23.Javan Gholiloo. M., Yarnia, M., Ghorttapeh, A.H., Farahvash. F., and Daneshian, A.M. 2019. Evaluating effects of drought stress and bio-fertilizer on quantitative and qualitative traits of valerian (Valeriana officinalis L.). J. Plant Nut. 42: 1417–1429. doi: 10.1080/01904167.2019.1628972.

    24.Kafi, M., Borzooei, A., Salehi, M., Kamandi, A., Masumi, A. and Nabati, J. 2009. Physiology of environmental stresses in plants. Jahad of University of Mashhad University Press. 502 p.

    25.Karimi, Gh., Ghorbanli, M., Heydari Sharif Abad, H., and Osareh, M. 2006. Survey for resistance to salinity in pasture species (Atriplex vertucifera M. B). Journal of Research and Building. 3(73): 42-48.

    1. Khan, A.S., Ul-Allah, S., and Sadique. S. 2010. Genetic variability and correlation among seedling traits of Wheat (Triticum sativum) under water stress. International Journal of Agriculture and Biology, 12(2): 247-250.

    27.Kheirizadeh Arough, Y., Seyed Sharifi, R., and Seyed Sharifi, R. 2016. Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition. International Journal of Interactions, http://dx.doi.org/10.1080/17429145.2016.1262914.

    28.Kloepper, J.W., Lifshitz, R., and Zablotowicz, R.M. 1989. Free-living bacterial inocula for enhancing crop productity. Trends Biotechnol, 7: 39-43.

    1. Kumar, A., Patel, J.S., Meena, V.S. and Srivastava, R. 2019. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatal. Agri. Biotechnol. 20:101271.doi:10.1016/j.bcab.2019.101271.

    30.Majidian, A., Ghalavand, M., Haghighati, A., and Karimian, A. 2007. Translation error effect of drought stress, chemical fertilizer and organic fertilizer at different growth stages on agronomic characteristics of corn. Proceedings of the 2th National Conference on Ecology. (In Persian).

    1. Mozaffarian, V. 2012. Identification of medicinal and aromatic plants of iran. Farhang e moaser press. 1444 p.
    2. Omid Beigi, R. 2005. Approaches to the production and processing of medicinal plants. Volume One, Fekr Rooz Publications. 215 p.

    33.Parakash, V., and Singh, S. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12: 3945. DOI: 10.3390/su12103945.

    34.Prakash, M., and Ramachandran, K. 2000. Effects of moisture stress and anti transpirantsion leaf chlorophyll. Soluble protein and photosynthetic rate in brinjal plants. Journal of Agronomy 184: 153-156.

    35.Rahdari. P., and Hoseini, S.M. 2012. Drought Stress: A Review. Intl J Agron Plant Prod 3:443-446.

    1. Rahimi. A., Moghaddam, S.S., Ghiyasi, M., Heydarzadeh, S., Ghazizadeh, K., and Popovic- Djordjevic, J. 2019. The influence of chemical organic and biological fertilizers on agrobiological and antioxidant properties of syrian cephalaria (Cephalaria syriaca L.). Agriculture. 9: 122, DOI: 10.3390/agriculture9060122.
    2. Rechinger, Kh. 1982. Labiatae In: Flora Iranica, 150, Verlagsanstat, Austria: Akademische Druch-u.

    38.Ritchie, S.W., Nyvgen, H.I., and Halady, A.S. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 30: 105-111.

    39.Sandhya. V., Ali, S.K.Z., Grover, M. Reddy, G., and Venkateswaralu, B. 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation 62(1): 21-30.

    1. Sayar, R., Khemira, H., Kameli, A., and Mosbahi, M. 2008. Physiological tests as predictive appreciation for drought tolerance in durum wheat (Triticum durum Desf.). Agronomy Research 6(1): 79-90.

    41.Shaharoona, B., Arshad, M., and Zahir, Z.A. 2006. Effect of plant growth promoting rhizobacteria containing ACC deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Letters in Applied Microbiology. 42(2): 155-159.

    42.Shirani Bidabadi, S., and Mehralian, M. 2020. Seed bio-priming to improve germination, seedling growth and essential oil yield of Dracocephalum Kotschyi Boiss, an Endangered Medicinal Plant in Iran. Gesunde Pflanzen, 72(1): 17-27.

    43.Shirani Bidabadi, S., and Sharifi P. 2021. Strigolactone and methyl Jasmonate-induced antioxidant defense and the composition alterations of different active compounds in Dracocephalum kotschyi Boiss under drought stress. Journal of Plant Growth Regulation, 40: 878- 889.

    44.Sonboli. A. Mirzania, F., and Gholipour, A. 2018. Essential oil composition of Dracocephalum kotschyi Boiss., from Iran. Natural Product Research doi: 10.1080/14786419.2018.1482550.

    45.Sperdouli, I., and Moustakas, M. 2012. Interaction of proline, sugars. and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J. Plant Physiol. 169: 577–585.

    46.Sun, Y., Wang, C., Chen, H.Y.H., and Ruan, H. 2020. Response of plants to water stress: A Meta-Analysis. Front. Plant Sci. 11:978. https://doi.org /10.3389/fpls.2020.00978.

    1. Taibi, K., Taibi, F., Ait Abderrahim, L. Ennajah, A., Belkhodja, M., and Mulet, J.M. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105: 306- 312.
    2. Urban, L., Aarrouf, J., and Bidel, L.P.R. 2017. Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. 8: 2067. doi: 10.3389/fpls.2017.02068.
    3. Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., and Cao, K. 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports 10:177. https://doi.org/10.1038/s41598-019-56954-2.
    4. Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F., and Wu, J. 2020. Effects of water stress on photosynthesis. Yield and water use efficiency in winter wheat. Water, 12: 2127. Doi: 10.3390/w12082127.
    5. Zhou, X., Zhang, J., Chen, D., Huang, Y., Kong, W., Yuan, L., Ye, H., and Huang, W. 2020. Assessment of leaf chlorophyll content models for winter wheat using landsat-8 multispectral remote sensing data. Remote Sensing, 12: 2574. DOI: 10.3390/rs12162574.