بررسی پاسخ فیتوشیمیایی و مورفولوژیکی توده بومی Cyamopsis tetragonoloba L.منطقه ایرانشهر به محلول‌پاشی نانو ذرات اکسید روی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زیست شناسی گیاهی، دانشکده علوم طبیعی، دانشگاه تبریز، ایران، مربی، گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه پیام نور زاهدان، زاهدان، ایران

2 استاد، گروه زیست شناسی گیاهی، دانشکده علوم طبیعی، دانشگاه تبریز، ایران

3 استاد، گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران

4 استادیار، مرکز تحقیقات گیاهان دارویی و زینتی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

از آنجایی که تغذیه گیاهان با عنصر روی، یک راهکار برای بهبود رشد و نمو گیاهان و جبران کمبود روی در خاک است، در این تحقیق، به­منظور بررسی اثر تغذیه‌ای نانو ذرات اکسید روی با اندازه 40 نانومتر بر ویژگی­های مورفولوژیک، صمغ دانه و فراورده­های فیتوشیمیایی برگ توده بومی گیاه گوار (Cyamopsis tetragonoloba L) از ایرانشهر، آزمایشی کاملاً تصادفی با سه تکرار انجام شد. سنجش میزان صمغ گوار به روش فنل-سولفوریک اسید، میزان فنل کل به روش معرف فولین-سیوکالتیو و میزان فلاونوئید کل به روش رنگ سنجی آلومینیوم کلراید انجام گرفت. کشت بذر­ها در در اوایل خردادماه 1397، در گلخانه‌ دانشگاه سیستان و بلوچستان انجام شد. تیمارها شامل شش غلظت مختلف نانو ذرات اکسید روی 0 (شاهد)، 25، 50، 100، 200، 500 میلی‌گرم در لیتر بودند که به‌صورت محلول‌پاشی برگی در دو مرحله (20 و 27 روز پس از کشت بذرها) بر گیاهان گوار اعمال شدند. از میان صفات اندازه‌گیری شده، با افزایش غلظت نانو ذرات، کاهش تدریجی و معنی داری در تعداد دانه در غلاف مشاهده شد. در حالی­که اثر غلظت نانو ذرات بر طول غلاف و طول ریشه معنی دار نبود، اما طول ساقه، وزن خشک ساقه، وزن خشک ریشه، سطح برگ، تراکم روزنه­ها، وزن خشک برگ، وزن 500-دانه، وزن خشک غلاف، با افزایش غلظت نانو ذرات تا تیمار 500 میلی‌گرم بر لیتر نانو ذرات اکسید روی، افزایش معنی‌داری نسبت به شاهد نشان دادند. در این تیمار، صمغ دانه، فنل کل و فلاونوئید کل به‌ترتیب به میزان 55/2، 10/2 و 34/1 برابر نسبت به تیمار شاهد افزایش نشان دادند.   بـر اساس نتایج بدست آمده می­توان با هدف بهبود ویژگی­های رشد و افزایش میزان صمغ دانه، فنل و فلاونوئید برگ گیاه گوار از نانو ذرات اکسید روی با ویژگی­های به­کار رفته در این پژوهش استفاده نمود و با افزایش صمغ گوار از کاربردهای دارویی آن بهره برد.

کلیدواژه‌ها


  1. Achayuthakan, P., and Suphantharika, M. 2008. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum. Carbohydrate Polymers. 71(1):9-17.
  2. Adiga, J.D., B.M. Muralidhara, P. Preethi, pathi, L. and Kalaivanan, D. 2018. Effect of zinc and boron application on leaf area, photosynthetic pigments, stomatal number and yield of cashew. International Journal of Current Microbiology and Applied Sciences. 7(1):1786-1795.
  3. Archer, D., and Kramer, D. 2020. The use of microbial accessible and fermentable carbohydrates and/or butyrate as supportive treatment for patients with coronavirus SARS-CoV-2 infection. Frontiers in Medicine. 7(292):5-7.
  4. Arkhimandritova, S., Shavarda, A. and Potokina, E. 2020. Key metabolites associated with the onset of flowering of guar genotypes Cyamopsis tetragonoloba (L.) Taub. BMC Plant Biology. 20:1-10.
  5. Bhatt, R.K., Jukanti, A.K. and Roy, M.M. 2017. Cluster bean Cyamopsis tetragonoloba (L.) Taub., an important industrial arid legume. Legume Research. 40(2):207-214.
  6. Blasco, B., Navarro-León, E. and Ruiz, J. 2019. Study of Zn accumulation and tolerance of HMA4 TILLING mutants of Brassica rapa grown under Zn deficiency and Zn toxicity. Plant Science. 287:110201.
  7. Castillo-González, J., Ojeda-Barrios, D., Hernández-Rodríguez, A., González-Franco, A., Robles-Hernández, L. and López-Ochoa, G. 2018. Zinc metalloenzymes in plants. Interciencia. 43(4):242-248.
  8. Chamani, E., Karimi Ghalehtaki, S., Mohebodini, M. and Ghanbari, A. 2015. The effect of zinc oxide nano particles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Iranian Journal of Genetics and Plant Breeding. 4(2):11-19.
  9. Dzyubenko, N.I., Dzyubenko, E.A., Potokina, E.K. and Bulyntsev, S.V. 2017. Clusterbeans Cyamopsis tetragonoloba (L.) taub. Properties, use, plant genetic resourses and expected introduction in Russia. Sel'sskokhozyaistvennaya Biologiya. 52(6):1116-1128.
  10. El-Tohamy, W.A., and El-Greadly, N.H.M. 2007. Physiological responses, growth, yield and quality of snap beans in response to foliar application of yeast, vitamin E and zinc under sandy soil conditions. Australian Journal of Basic and Applied Sciences. 1(3):294-299.
  11. Fageria, N.K., Filho, M.P.B. and Moreira, A. 2009. Foliar fertilization of crop plants. J. Plant Nutr. 32(6):1044-1064.
  12. Gupta, A.P. and D. Verma, K. 2014. Guar gum and their derivatives: A research profile. International Journal of Advanced Research. 2(1):680-690.
  13. Hellebust,A., and Craigie, J.S. 1978. Handbook of physiological and biochemical methods Cambrige univ, New York and London.512.
  14. Hussain, A., and Ali S. 2018. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution. 242:1518-1526.
  15. Kazemi Oskuee, R., Hamid, M.H.N.A., Kargar, H., Darroudi, M., Sabouri, Z. and Khorsand Zak, A. 2013. Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceramics International. 39(8):9195-9199.
  16. Khan, I., Saeed, K. and Khan, I. 2017. Nanoparticles: properties, applications and toxicities. 2017. Arabian Journal of Chemistry. 12(7):908-931.
  17. Khater, R.M., and Abd-allah, W.H.A. 2017. Effect of some trace elements on growth, yield and chemical constituents of Ocimum bacilicum Egyptian Journal of Desert Research. 23(1):1-23.
  18. Kim, D., Lee, J.-Y., Yang, J.S., Kim, J.W., Kim, V.N. and Chang, H. 2020. The architecture of SARS-CoV-2 transcriptome. Cell. 181(4): 914-921.e10.
  19. Kulbat, K. 2016. The role of phenolic compounds in plant resistance. Biotechnology and Food Sciences. 80(2):97-108.
  20. López-Moreno, M.L., De la Rosa, G., Hernández-Viezcas, J.A., Castillo-Michel, H., Botez, C.E., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. 2010. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology. 44(19): 7315-7320.
  21. Meena, K.R., Dahama, A.K. and Rerager, M.L. 2006. Effect of phosphorus and zinc fertilization on growth and quality of clusterbean Cyamopsis tetragonoloba (L.) Taub. Annuals of Agricultural Ressearch. 27(3): 224-226.
  22. Meftahizadeh, H., Ghorbanpourb, M. and Asareh, M.H. 2019. Comparison of morphological and phytochemical characteristics in guar (Cyamopsis tetragonoloba) landraces and cultivars under different sowing dates in an arid environment. Industrial Crops and Products. 140:111606.
  23. Mianabadi, M., and Hoshani, M. 2015. Antimicrobial and anti-oxidative effects of methanolic extract of Dorema aucheri Jourrnal of Agricultural Science and Technology. 17(3):623-634.
  24. Mohsenzadeh, S., and Moosavian, S.S. 2017. Zinc sulphate and nano-zinc oxide effects on some physiological arameters of Rosmarinus officinalis. American Journal of Plant Sciences. 08(11):2635-2649.
  25. Morffy, N., and Strader, L. 2020. Old town roads: routes of auxin biosynthesis across kingdoms. Current Opinion in Plant Biology. 55:21-27.
  26. Mudgil, D., Barak, S. and Khatkar, B.S. 2014. Guar gum: processing, properties and food applications International Journal of Food Science and Technology. 51(3):409-418.
  27. Mudgil, D., Barak, S. and Khatkar, B.S. 2016. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough. International Journal of Biological Macromolecules. 93:131-135.
  28. Nair, R. 2016. Effects of nanoparticles on plant growth and development p. 95-118, In Kole, et al., (eds.). Plant Nanotechnology Springer, Cham. 383.
  29. Nielsen, S.S. 2010. Phenol-Sulfuric acid method for total carbohydrates, p. 177, In S. Nielsen, (ed.) Food Analysis Laboratory Manual. Springer, Boston, MA, Boston.
  30. Parmar, S. 2016. Effect of ZnO nanoparticles on germination, growth and yeild of ground nut (Arachis hypogaea) Doctor of philosophy, Anand Agricultural, India. Anand.
  31. Priester, J.H., Ge, Y., Mielke, R.E., Horst, A.M., Cole, S. and Priester, J.H. 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences of the United States of America. 109(37):14734-14735.
  32. Raliya, R., and Tarafdar, J.C. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba). Agricultural Research. 2(1):48-57.
  33. Salama D.M., Osman, S.A., Abd El-Aziz, M.E., and Abd Elwahed, M.S.A. 2019. Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal Agric Biotechnol. 18101083.
  34. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J., Hartenstein, V. Eliceiri, K., Tomancak, P. and A. Cardona. 2012. An open-source platform for biological-image Nature Methods. 9676–682
  35. Schulten, A., Bytomski, L., Quintana, J., Bernal, M. and Krämer, U. 2019. Do Arabidopsis squamosa promoter binding protein-like genes act together in plant acclimation to copper or zinc deficiency? Plant Direct. 3:1-14.
  36. Siddiqui, Z., Parveen, A., Ahmad, L. and Hashem, A. 2019. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae. 249:374-382.
  37. Singh, A., Prasad, S.M. and Singh, S. 2018. Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environmental Nanotechnology Monitoring and Management. 9:42-49.
  38. Singh, R. 2014. Improved cultivation practices for clusterbean in kharif and summer season improved cultivation practices for clusterbean in kharif and summer season. Indian Council of Agricultural Research (ICAR). Central Arid Zone Research Institute, Jodhpur.
  39. Song, C., Liu, M., Meng, J., Chi, M., Xi, Z. and Zhang, Z. 2015. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera Merlot growing on zinc deficient soil Molecules. 20(2): 2536-2554.
  40. Sturikova, H., Krystofova, O., Huska, D. and Adam, V. 2018. Zinc, zinc nanoparticles and plants. Journal of Hazardous Matererials. 349:101-110.
  41. Sultan, M., Zakir, N., Ashiq Rabbani, M., Shinwari, Z.K. and Shahid Masood, M. 2013. Genetic diversity of guar (Cyamopsis tetragonoloba) landraces from Pakistan based on RAPD markers. Pakistan Journal of Botany. 45(3):865-870.
  42. Sun, L., Wang, Y., Wang, R., Zhang, P., Ju, Q. and Xu, J. 2020. Physiological, transcriptomic and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environmental Science: Nano. 7(11):3587-3604.
  43. Torabian, S., Zahedi, M. and Khoshgoftarmanesh, A. 2016. Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. Journal of Agricultural Science and Technology. 18(4):1013-1025.
  44. Walia, N. 2005. Guar gum as a gelling agent for plant tissue culture media. In Vitro Cellular and Developmental Biology- Plant. 41:258-261.
  45. Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A. and Pokhrel, L.R. 2020. Zinc oxide nanoparticles (ZnO NPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max Kowsar). Science of the Total Environment. 738:140240.
  46. Zhang, T., Sun, H., Lv, Z., Cui, L., Mao, H. and Kopittke, P.M. 2018. Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. Journal of Agricultural and Food Chemistry. 66(11):2572-2579.