بررسی تنوع فیتوشیمیایی ترکیبات اسانس گونه دارویی Salvia sharifii Rech. f. & Esfand. در رویشگاه‌های مختلف استان هرمزگان

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران.

10.30495/ejmp.2021.1942516.1657

چکیده

مریم­گلی جنوبی با نام علمی Salvia sharifii Rech. f. & Esfand. یکی از گونه­های چندساله و معطر اندمیک متعلق به تیره نعناع (Lamiaceae) می­باشد که به­صورت خودرو در جنوب ایران رویش یافته و به­طور سنتی به‌عنوان ضدعفونی کننده، ضد اسهال، ضد التهاب، بادشکن، هضم کننده و مسکن استفاده می­شود. در این تحقیق، در بهار سال 1398 و در مرحله گلدهی کامل، اندام هوایی سه جمعیت مختلف این گیاه از رویشگاه­های طبیعی آن در استان هرمزگان شامل آبماه، قطب­آباد و سیرمند، در محدوده ارتفاع از سطح دریا 760 تا 1210 متر، جمع‌آوری شده و نمونه­ها در سایه و دمای محیط، خشک شدند. استخراج اسانس به روش تقطیر با آب به‌وسیله دستگاه کلونجر با سه تکرار صورت پذیرفت و پس از اندازه­گیری بازده اسانس (درصد وزنی به وزنی)، نوع و میزان ترکیبات شیمیایی موجود در اسانس جمعیت­ها با استفاده از دستگاه­های گاز کروماتوگرافی گازی (GC) و گاز کروماتوگرافی متصل به طیف­سنج جرمی (GC/MS) مشخص شد. نتایج نشان داد بیشترین و کمترین بازده اسانس به­ترتیب مربوط به جمعیت سیرمند (14/1 درصد) و جمعیت قطب­آباد (65/0 درصد) بود. ترکیب غالب و مشترک در جمعیت‌های آبماه و سیرمند، لینالول و در جمعیت قطب­آباد، المول بود. دومین ترکیب غالب در اسانس آبماه، قطب­آباد و سیرمند به­ترتیب اسکلارئول اکساید، آگاروسپیرول و هگزیل-2- متیل بوتیرات بودند. در حالی­که سومین ترکیب غالب در جمعیت آبماه، هگزیل-2- متیل بوتیرات بود، در دو جمعیت قطب­آباد و سیرمند به­ترتیب ترکیب­های هگزیل کاپریلات و هگزیل ایزو والرات به­عنوان سومین ترکیب غالب مشاهده گردید. وجود تنوع شیمیایی در بین جمعیت­های طبیعی مریم­گلی جنوبی نشان داد ضمن تاثیر وراثت، این گونه دارای پتاسیل سازگاری بالایی نیز می­باشد؛ به­طوری­که دامنه وسیعی از شرایط اقلیمی از قبیل درجه حرارت، ارتفاع و بارندگی در بین جمعیت­های مختلف وجود دارد که می­تواند در راستای حفاظت و اهلی کردن درون و خارج از محل رویش این گونه در نظر گرفته شود.

کلیدواژه‌ها


  1. Adams, R.P. 2011. Identification of essential oils by ion trap mass spectroscopy. Academic Press, New York, USA, p: 809.
  2. Aghaee, Z., Alizadeh, A., Honarvar, M. and Babadaei Samani, R. 2021. Phytochemical screening and antimicrobial activity of Salvia sharifii & Esfand from Iran. Natural Product Research, 1906241.
  3. Ale Omrani Nejad, S. and Rezvani Aghdam, A. 2019. The study of essential oil composition and antioxidant activity of Oliveria decumbens collected from different regions of Khuzestan province. Ecophytochemistry Journal of Medicinal Plants, 24(6): 14-25. (In Persian)
  4. Asgarpanah, J., Oveyli, E. and Alidoust, S. 2017. Volatile components of the endemic species Salvia sharifii f. & Esfand. Journal of Essential Oil Bearing Plants, 20(2): 578-582.
  5. Bahadori, M.B., Salehi, P. and Sonboli, A. 2017. Comparative study of the essential oil composition of Salvia urmiensis and its enzyme inhibitory activities linked to diabetes mellitus and Alzheimer’s disease. International Journal of Food Properties, 20(12): 2974-2981.
  6. Bernath, J. 2008. Production ecology of secondary plant products. In LE Craker and JE Simon (eds.). Herbs, spices and medicinal plants: Recent advances in botany, horticulture and pharmacology. Vol. I. Oryx Press, Phoenix, Arizona, p: 220.
  7. British Pharmacopoeia. 2007. Appendix XI. Vol. 2, London, HMSO, p: 1022.
  8. Cristina Figueiredo, A., Barroso, J.G., Pedro, L.G. and Scheffer, J.C. 2008. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal, 23: 213-226.
  9. Davies, N.W. 1998. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and carbowax 20M phases. Journal of Chromatography, 503: 1-24.
  10. Drew, B. 2020. Evolution, pollination biology, and species richness of Salvia (Lamiaceae). International Journal of Plant Sciences, 181(8): 1-3.
  11. Fejér, J., Gruľová, D., Eliašová, A., Kron, I. and De Feo, V. 2018. Influence of environmental factors on content and composition of essential oil from common juniper ripe berry cones (Juniperus communis). Plant Biosystem, 1435577: 1-9.
  12. Fernández-Sestelo, M. and Carrillo, J.M. 2020. Environmental effects on yield and composition of essential oil in wild populations of Spike Lavender (Lavandula latifolia). Agriculture; 10(12): 626.
  13. Heydari, Z., Yavari, A., Jafari, L. and Mumivand, H. 2020. Study on the chemical diversity of essential oil from different plant parts of Salvia sharifii f. & Esfand. Iranian Journal of Medicinal and Aromatic Plants, 36(4): 627-641. (In Persian)
  14. Jamshidi, A.M., Aminzadeh, M., Azarnivand, H. and Abedi, A. 2006. Effect of evaluation for quality and quantity of essential oil Thymus kotschyanus (Damavand – Tar). Journal of Medicinal Plants, 2(18): 17-22. (In Persian)
  15. Jamzad, Z. 2012. Flora of Iran (Vol. 76): Lamiaceae. Research Institute of Forests and Rangelands, Tehran, Iran, p: 1074. (In Persian)

 

  1. Kulak, M. 2020. Recurrent drought stress effects on essential oil profile of Lamiaceae plants: An approach regarding stress memory. Industrial Crops and Products, 154: 112695.
  2. Lee, Y.L. and Ding, P. 2016. Production of essential oil in plants: ontogeny, secretory structures and seasonal variations. Pertanika Journal of Scholarly Research Reviews, 2(1): 1-10.
  3. Leontaritou, P., Lamari, F.N., Papasotiropoulos, V., and Iatrou, G. 2020. Morphological, genetic and essential oil variation of Greek sage (Salvia fruticosa) populations from Greece. Industrial Crops and Products, 150: 112346.
  4. Lopresti, A.L. 2017. Salvia (sage): a review of its potential cognitive-enhancing and protective effects. Drugs in R&D, 17(1): 53-64.
  5. Mahajan, M., Kuiry, R. and Pal, P. 2020. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18: 100255.
  6. Medjahed, F., Merouane, A., Saadi, A., Bader, A., Cioni, P.L. and Flamini, G. 2016. Chemical profile and antifungal potential of essential oils from leaves and flowers of Salvia algeriensis (Desf.): A comparative study. Chilean Journal of Agricultural Research, 76(2): 195–200.
  7. Najafi, S., Mousavi, S.M. and Shafeghat, M. 2016. Phytochemical, antioxidant and antibacterial properties of medical plant Salvia sharifii f. & Esfand. Iranian Journal of Infectious Diseases and Tropical Medicine, 20(71): 33-39. (In Persian)
  8. Nematollahi, A., Mirjalili, M.H., Hadian, J. and Yousefzadi, M. 2017. Chemical diversity among the essential oils of natural Salvia mirzayanii (Lamiaceae) populations from Iran. Plant Production Technology, 9 (1): 1-16. (In Persian)
  9. Rabie, M., Firuzi Ardestani, M., Asri, Y. and Bakhshi Khaniki, G. 2015. Phytochemical study of essential oil of Ziziphora clinopodioides in the natural habitats of Alborz and Mazandaran provinces.
  10. Ecophytochemistry Journal of Medicinal Plants, 11(3): 54-61. (In Persian)
  11. Raeisi Monfared, A., Yavari, A. and Moradi, N. 2018. Study on chemical compositions of essential oil of some Salvia santolinifolia Ecotypes. Iranian Journal of Horticulture Science, 50 (3): 745-754. (In Persian)
  12. Rechinger, K.H. 1982. Flora Iranica (Vol. 152). Graz: Akademische Druck- und Verlagsanstalt, Austria, p: 597.
  13. Sharma, S., Sharma, S., Chourasia, R., Pandey, A., Kumar Rai, A. and Sahoo, D. 2021. Alzheimer’s disease: ethanobotanical studies. Naturally Occurring Chemicals Against Alzheimer's Disease, 221: 11-28.
  14. Shibamoto, T. 1987. Retention indices in essential oil analysis. in capillary gas chromatography in essential oil analysis, Sandra P, Bichi C (eds). Alfred Heuthig: New York, 259–275.
  15. Soltanipoor, M.A., Asadpoor, R., Hajebi, A. and Moradi, N. 2010. Study of pre-treatments on seed germination of Foeniculum vulgare , Salvia sharifii Rech. et Esfand. and Abutilon fruticosum Guill. et Perr. Iranian Journal of Medicinal and Aromatic Plants, 25(4): 528-539. (In Persian)
  16. Wu, H., Ma, P., Li, H., Hu, G. and Li, D. 2021. Comparative plastomic analysis and insights into the phylogeny of Salvia (Lamiaceae). Plant Diversity, S2468265920300652.
  17. Xu, W., Jin, X., Yang, M., Xue, S., Luo, L., Cao, X. and Wang, X. 2021. Primary and secondary metabolites produced in Salvia miltiorrhiza hairy roots by an endophytic fungal elicitor from Mucor fragilis. Plant Physiology and Biochemistry, 160: 404–412.
  18. Yavari, A., Nazeri, V., Sefidkon, F. and Hassani, M.E. 2010. Influence of some environmental factors on the essential oil variability of Thymus migricus. Natural Product Communications, 5 (6): 943-948.
  19. Zare, S. and Jassbi, AM. 2014. Using chemical classification of the essential oils to differentiate Salvia sharifii from macrosiphon, Journal of Essential Oil Bearing Plants, 17(6): 1356-1360.
  20. Zhang, X., Yu, Y., Yang, D., Qi, Z., Liu, R., Deng, F., Cai, Z., Li, Y., Sun, Y. and Liang, Z. 2018. Chemotaxonomic variation in secondary metabolites contents and their correlation between environmental factors in Salvia miltiorrhiza from natural habitat of China. Industrial Crops and Products. 113: 335–347.